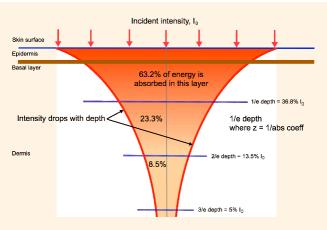
AN INTRODUCTION TO

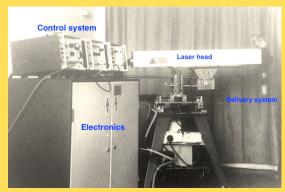
LASER TATTOO REMOVAL



MIKE MURPHY LISA MCMAHON Copyright 2025 Ed. 1.2

TABLE OF CONTENTS

ABOUT US	4
INTRODUCTION	5
TATTOOS	6
TATTOO INKS	7
LIGHT AND TATTOOS	8
LASERS	9
LASER INTERACTIONS	10
THE MECHANISM	11
CHOOSING THE WAVELENGTH	13
CHOOSING THE FLUENCE	14
NANO VS PICO PULSEWIDTHS	15
CLINCIAL ENDPOINTS	16
"DIFFICULT" COLOURS	17
OXIDATION	19
SKIN COOLING	20
TIMINGS	21
BAD RESULTS	22


ABOUT US

DermaLase was originally established in 1989 by Mike Murphy with the intention of selling and marketing their Q-switched ruby laser for tattoo removal. This came from the original research program in Canniesburn Hospital, Glasgow in the early 1980s.

Mike joined the research unit in 1986 and helped to develop the removal of paediatric port wine stains using a pulsed dye laser. He also began to design computer models to study the effects of laser energy in the skin - something he has continued to

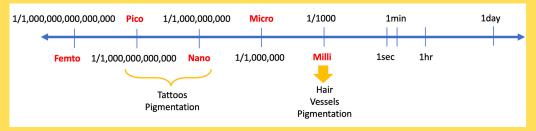
develop to this day.

Mike writes blog posts,
Patreon articles and
scientific papers discussing
his research and clinical
findings routinely. He
presents his work at
medical laser conferences
around the world and loves
a good pint of Guinness.

The original laser system used to demonstrate scar-free, tattoo removal in Canniesburn Hospital, Glasgow in the early 1980s

A very young Mike Murphy with the world's first QS ruby laser used for tattoo removal

Lisa joined DermaLase in 2023 with a background in HR and aesthetics. She runs her own laser/IPL clinic treating hair, tattoos, blood vessels and various other skin problems.

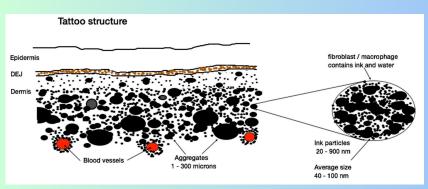

INTRODUCTION

Scar-free, laser tattoo removal has been around since its inception in the early 1980s. Back then, we used a Q-switched ruby laser (694nm) with a 40 nanosecond pulsewidth. This was the first time tattoos were able to be removed without causing permanent scars.

The world's first private laser tattoo clinic was opened by Mike in 1989 in Glasgow, Scotland. Shortly after that, he and his colleagues began to sell these lasers across the world after gaining FDA clearance.

Since then a number of lasers have been introduced into the market including the Nd:YAG with two wavelength (1064 and 532nm) and the Alexandrite laser (at 755nm). Later still, picosecond lasers were introduced utilising sub-nanosecond pulsewidths.

During this time, a number of other skin treatments were developed including the removal of benign pigmentation, carbon facials and skin rejuvenation.


Laser tattoo removal utilises very short pulses of light energy to induce the required reaction in the tattoo ink particles. These pulses need to be in the nanosecond to picosecond range, to ensure that the right temperatures are achieved on the ink particle surfaces. The image above shows where this range lies in the time spectrum.

TATTOOS

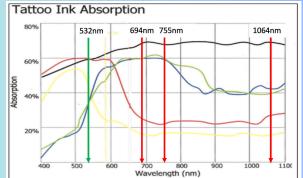
What are tattoos?

It is important to understand the nature and composition of tattoos before we look at lasering them.

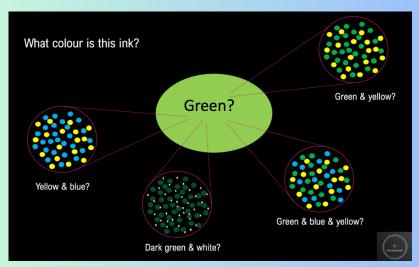
Tattoo ink particles are absolutely tiny - typically they are between 10 and 100 nanometres in size. That is much smaller than the wavelengths of light that we use to treat them. Their median size is around 40 nm, usually.

About three to four months after injection, most of the ink particles are to be found inside dermal macrophages and fibroblasts.

When tattoo ink is injected into the skin, the tiny particles are attracted to each other due to electrostatic (van der Waals) forces. They form aggregates which can grow to very large sizes - up to 300 microns across. On injection, the body tries to remove the ink particles through lymphatic macrophages, mast cells, fibroblasts etc. But, the larger aggregates are too big to physically shift. So, the body generates dermal macrophages which 'consume' these aggregates and keep them *in situ*, in the dermis.


Tattoo ink particles generally do not form chemical bonds with their adjacent particles. They exist as a 'slurry' - individual particles in water - a bit like sand in a bucket filled with water, at the beach.

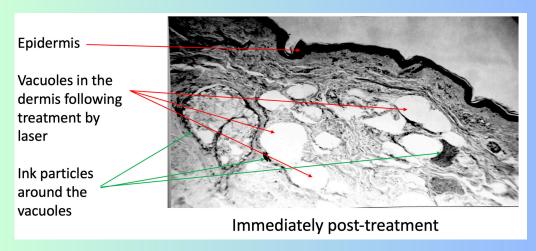
TATTOO INKS


Up until around 2000, most tattoo inks were either organic or metallic in composition. Then the ink manufacturers introduced a new form of plastic inks (polymers) with lots of new, bright and shiny colours.

This made life a bit more difficult for laser operators - since plastic inks are more difficult to shift! These inks usually take a few more treatment sessions than the older, conventional inks.

The real problem for laser operators is that we can never know what is actually in any particular colour. Most tattoo artists mix a number of inks to produce a particular colour that they are after.

Consequently, most of the inks we see in a tattoo are actually mixtures of a range of colours - each with their own absorption!

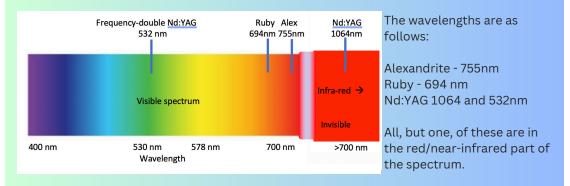


Who knows what those colours really are??? Without microscopic analysis, it is impossible to tell!

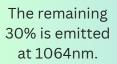
LIGHT AND TATTOOS

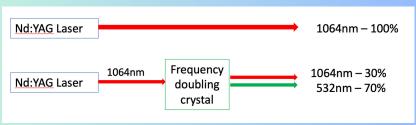
How does light remove tattoos?

Well, it doesn't! We use light to transfer energy into the tattoo particles. This energy becomes heat which raises the temperature of the surface of the ink particles to around 300 to 400 degrees Celsius. Since the particles are encapsulated inside macrophages filled with water, the heat creates steam near the particle surfaces. Steam expands very rapidly causing the macrophages to burst apart, launching ink particles at very high speeds throughout the dermis. This causes the pain that many feel during treatments.



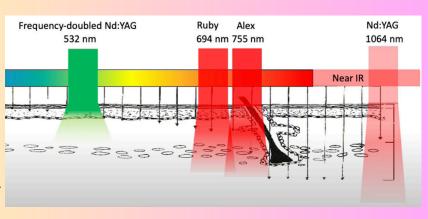
Histology examined during the original research in the early 1980s clearly show these steam bubbles (above). These are usually called 'vacuoles' and are responsible for some of the 'frosting' appearance we see during treatments.


Research by scientists studying the effect of QS 532nm light energy on gold nanoparticles revealed that these steam bubbles begin to form less than 1 nanosecond after the particles were irradiated. We believe that precisely the same mechanisms occur in tattoo ink particles too.


LASERS

The original laser used to successfully demonstrate scar-free tattoo removal was the Q-switched ruby. Since then we've seen the introduction of the QS Nd:YAG and Alexandrite lasers and the picosecond Nd:YAG and Alexandrite (around 2013).

The Nd:YAG laser is unique in that it can be used to generate two wavelengths - very unusual in lasers!! It does this by firing the original 1064nm beam into a KTP crystal, which then 'converts' around 70% (or so) of the energy into the frequency-doubled beam with a wavelength of 532nm.


All of these wavelengths are absorbed by ALL ink colours - to some degree. Black inks absorb more strongly than all the other colours. But, contrary to the current consensus, all colours will absorb a percentage of any of these wavelengths, depending on the absorption coefficient.

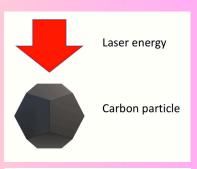
LASER INTERACTIONS

It is important to understand a bit of physics at this point. The way light interacts with the skin and its constituents is poorly understood - by most people. Yet, a basic understanding will help in many treatments.

When light enters the skin, the photons encounter atoms immediately. There are two possible outcomes from these interactions - either the atoms will absorb some photons, which will raise their temperature slightly. Or, and **much more likely**, the photons will be 'scattered' into a new direction. The skin is a highly scattering medium - virtually every photon will be scattered, many times, before it finally is aborbed by an atom (or, directed out of the skin altogether - this is known as 'back-scattering').

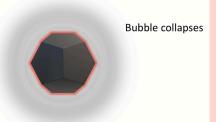
The different
wavelengths
penetrate to
different depths
in the skin due to
anisotropy.
Longer
wavelengths
penetrate deeper.

But, changing from one wavelength to another should not be considered a trivial choice! We must consider the ramifications of doing so. 1064nm is a rather 'benign' wavelength - it doesn't really interact much with any tissue!! Whereas, the 532nm wavelength is much more strongly absorbed in both melanin and blood. This means that changing from 1064nm to 532nm will likely cause more unwanted tissue damage, for precisly the same fluence. Plus, the 532nm will not penetrate as deeply as the 1064nm...


THE MECHANISM

How does laser treatment work?

This is how we think this process works...


Every ink particle is contained within a cell in the dermis, and is surrounded by tissue water. The most superficial particles (near to the skin surface) absorb some of the incoming laser energy and become hot, very rapidly.

In doing so, the adjacent tissue water also becomes hot and soon forms steam (in less than a nanosecond!!!)

Steam bubbles expand very rapidly – up to 700 metres/second. As they do, the macrophage cells 'explode' and the ink particles are rapidly pushed into the surrounding dermis. In essence, the same conditions that existed immediately after the tattoo was originally formed are recreated by the high-speed ink particles.

This is the cause of the pain felt in these treatments - hot, sharp particles tearing through the skin and nerve tissue.


These steam bubbles effectively form a 'steam mirror' within a few nanoseconds - blocking any further absorption of laser energy.

Computer models indicate that only a small fraction of the applied laser energy is actually absorbed by the ink particles.

THE MECHANISM

After a few nanoseconds, the bubble expansion stops and it collapses back towards the ink particle. This returns some of the latent heat energy back onto the particle's surface, which then reheats, creating more steam bubbles, from condensed droplets.

This cyclic process repeats a number of times until the heat energy is finally lost to the surrounding tissues through conduction.

It appears that laser tattoo removal is essentially a steamdriven process, thanks to the tissue water surrounding all the particles. These temperatures are not sufficiently high to induce any thermo-elastic or photo-acoustic processes.

The ink particles do not 'fragment', as many appear to think. There is nowhere near enough power in this scenario to do that. Instead, the aggregates shatter back into their component particles.

All this merely returns the tattoo particles and skin back to the same state which existed immediately after the original tattooing process. The body then responds by kick-starting the wound response mechanisms to repair the damage and remove the ink particles. This process occurs whether we fire nanosecond or picosecond pulses at tattoos.

HOW DO WE CHOOSE WAVELENGTH?

So, how do we choose the most appropriate wavelength for the target? Well, this is not so obvious!

Firstly, we can never know the actual colours in any tattoo ink, since it is most likely going to be an amalgamation of a number of colours.

Secondly, we have no idea what these inks are made of.

Thirdly, we cannot know (without an expensive spectrophotometer) how strongly those ink colours absorb at different wavelengths!

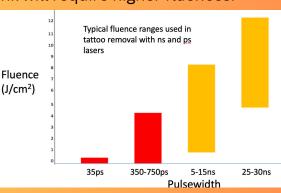
So it really is a bit of a 'guess', plus 'trial and error'. Research from a Korean study found the results in the image on the right. But, they tested 'pure' ink colours from a manufacturer.

Ink Colour	Wavelength
Black	1064/755/694
Green	755/694
Blue	755/694
Red	532
Yellow	532

Real world tattoos will rarely contain 'pure' colours - they simply don't. What this means is that you may be treating a 'green' coloured ink, which might actually be composed of yellow and blue inks. The blue ink may respond more strongly to your laser wavelength of choice, and fade more quickly than the yellow ink. This apparent 'green' ink will then appear to change colour over a number of sessions. The same applies for other colours! In reality, you need to 'test' the reaction with different wavelengths to see which might work best, over time.

HOW DO WE CHOOSE

FLUENCE?


What is the threshold fluence for tattoo removal?

Required fluences (J/cm²)							
Ink Colour	532nm	694nm	755nm	1064nm			
Black	2.3	2.0	2.0	2.0			
Green	4.0	2.3	2.3	3.4			
Blue	4.0	2.3	2.3	3.2			
Red	2.3	5.4	6.2	5.2			
Yellow	3.0	8.0	8.0	8.5			

Choosing the correct fluence is very important when treating tattoos. Too low a fluence will not induce the required reaction, while too high a fluence can easily damage the collagen.

The table above shows the 'threshold' fluences for a range of ink colours and laser wavelengths. These are the minimum fluences required to stimulate the desired response, but they only apply to the most superficial ink. Deeper ink will require higher fluences.

However, the laser pulsewidth has an effect on the threshold fluences. The image on the right shows how longer pulsewidths typically require higher fluences than shorter ones.

This image (left) shows a test Mike did using a QS Nd:YAG laser on a number of colours. He fired the 532nm beam at 3 J/cm^2 at each colour. We can clearly see that the red ink reacts more than the others, while the light green and yellow hardly react at all. The darker inks (to the left) show some petechia - little blood spots due to capillary damage. These reactions are fairly typical for this wavelength/fluence combination.

NANOSECONDS VS PICOSECONDS

The first commercially available picosecond laser for tattoo removal was introduced in 2013 by an American company. It was an Alexandrite laser at 755nm. A few years later, a picosecond Nd:YAG was launched by another company with both 1064nm and 532nm. Both companies claimed they could treat "all tattoos, all colours".

A couple of years later, a class-action lawsuit was launched by American buyers who felt that had been "duped" into buying these devices

The problem appeared to be that insufficient clinic trials had been carried out prior to those claims being made.

An excellent study was carried out in 2018 by a group of clinical researchers, and their findings were very interesting (see table).

In order of effectiveness							
		Ink colour:					
		Black	Red	Orange	Yellow	Green	Blue
	Order						
	1	1064 ps	532 ps	532 ps	532 ps	755 ps	755 ps
	2	532 ps	532 ns				
	3	1064 ns	1064 ps	1064 ps	1064 ps	532 ps	532 ps
	4	532 ns	1064 ns	1064 ns	1064 ns	1064 ps	1064 ps
	5	755 ps	755 ps	755 ps	755 ps	1064 ns	1064 ns

1: Choi M.S., et.al. "Effects of picosecond laser on the multi-colored tattoo removal using Hartley guinea pig: A preliminary study." (2018)

They found that their picosecond lasers appeared to generate the 'best' results across six ink colours - with three wavelengths - 1064, 532 and 755nm. However, what was most interesting is that they found that the Q-switched 532nm wavelength (labelled "532 ns" above) was the second best in terms of ink clearance, for all the ink colours, except black.

This study showed, clearly, that picosecond lasers are not necessarily the most efficient when treating tattoo inks. A good QS laser can be nearly as good - especially when we consider the prices!

CLINICAL ENDPOINTS

There are only **two** clinical endpoints we should observe:

1: an almost immediate reaction is the erythema (reddening) of the treatment area. This is due to dilation of the local blood vessels in response to the trauma we have inflicted in the skin.

2: a few minutes after the treatment, we should observe some local swelling (oedema) in the tattoo.

Both of these effects can be seen in the photos here.

Frosting, as seen above, is **not** a required clinical endpoint.
Often, this is only seen in the first few treatment sessions. It is caused by the formation of steam bubbles (vacuoles) around the ink particles and also due to damage in the melanosomes in the epidermis.

Some people appear to think that we must hear a loud 'cracking' sound when treating tattoos. This is just nonsense!! It is absolutely **not required**, and, in fact, is a bad thing. The 'crack' sound is generated when small spot diameters are fired at the skin resulting in huge energy and power densities. These densities are sufficient to strip oxygen molecules in the air, of electrons, briefly. That's what causes the sound - it has nothing to do with tattoos or the skin!!

"DIFFICULT" COLOURS

Some colours are more difficult to remove than others. Why is that?

Well, it is simply down to the 'absorption coefficient' of the coloured inks. This is a measue of how strongly the ink particle absorb the laser energy.

The problem is that the absorption coefficient varies enormously depending on the wavelength of the light. So, for example, green ink may absorb red light very strongly, but it will hardly absorb green light at all! This implies that we should only ever use red light on green inks.

Unfortunately, it is rarely that easy. Firstly, we can never know which ink colours are actually in the tattoos - we just cannot differentiate coloured mixtures very well. Secondly, without using the proper equipment, we cannot possibly know how strongly any colour will absorb any laser wavelength.

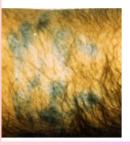
So, we simply have to 'test' the wavelengths we have to hand, and observe which works best. Inevitably, some coloured inks will react poorly, simply because they don't absorb enough energy. There are two choices now available - either we increase the fluence and see if that works any better; or we change wavelength and hope it is more strongly absorbed.

By kind permission of Billy Shipers, Shipers Laser Tattoo Removal Center, Texas.

Greens and purples are well known to be 'difficult' to remove with modern-day laser technology. Those pigments just don't absorb energy well from the wavelengths we typically use.

But, as we can see above, they can be successfully removed, if treated properly. Billy used a multi-wavelength laser which output 1064 and 532nm from an Nd:YAG laser and a 694nm beam from a ruby laser. By carefully choosing the most appropriate wavelengths and fluences for each colour, he managed to obtain the above, excellent result over 12 sessions.

The truth is, most ink colours can be effectively removed, if treated by a professional with good equipment.


OXIDATION

We often see laser operators talking about "oxidation" when some ink colours change into different colours.

This is quite curious as it is very difficult to determine whether something has actually oxidised!

However, ink colours can change for a number of reasons. The image on the right shows a red iron oxide ink compound which appears to have been chemically altered during the first treatment.

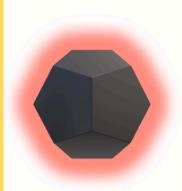
A series of treatments changed the red ink into black, which then faded over subsequent treatments.

In some situations, the colour appears to change simply because one of its constituent inks is fading much faster than other constituents.

Regardless of the reason for any colour change, the important issue is the ability of the new colour to absorb your laser energy. As discussed in the 'Difficult Colours' section, this depends on the absorption coefficient and the wavelength used.

Once again, this means that either a different wavelength must be used to tackle the 'new' colour. Or, sometimes, a higher fluence is the better option.

SKIN COOLING


Recently, some laser users have been precooling the tattooed areas prior to laser treatment. This appears to help reduce the painful sensations.

Now, this treatment is not regarded as a photothermal process, yet, we do now think it is essentially "steam-driven". Consequently, heat is generated within the dermis and will result in some localised temperature rises in the tissues.

This implies that pre-cooling is actually a good idea, to help minimise any pain associated with those elevated temperatures.

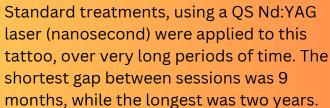
There is absolutely no reason why we shouldn't do this - it will not adversely affect the process at all. If it helps your patients/clients through the treatment session, then why not?

Hot surface

Some of the heat energy generated at the particle surfaces will diffuse into the surrounding tissue - leading to some localised heating.

TIMINGS

When we did the original clinical research in the 1980s, we determined that the 'optimum' gap between sessions should be four weeks. This was based, purely, on the appearance of the epidermis after previous sessions.


We published this back in 1990 in a plastic surgery journal. It became the standard timing for nearly 20 years. Then some people noticed that leaving a six week gap appeared to be 'better' in that more ink

usually disappeared.

That became the norm for about 10 more years. At that point, some people began to leave eight week intervals between sessions, claiming that this longer period was even 'better'.

It was then we began to wonder what was going on. So, Mike conducted a wee experiment on the tattoo shown here. This belonged to Lisa's husband, Conor.

The final result (bottom photo) was after just four sessions. Clearly, leaving longer gaps between sessions results in more ink being removed by the body.

We now recommend leaving three month gaps, to reduce the total number of sessions required.

21

BAD RESULTS

What happens when things go wrong?

The photo on the right shows what can occur if your patient/client does not follow aftercare instructions. He left the clinic and went to work in a shop where the walls and ceiling were being stripped. The air was obviously full of dirt, dust and other nasty bits and pieces.

His freshly treated tattoo was invaded and infected, even though it had been properly dressed after the treatment. Fortunately, the final result was not too bad, after a few months recovery.

You must insist that your patients/clients follow your post-treatment instructions to the letter!! Otherwise they can easily end up with situations like these...

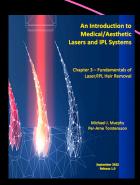
Mike Murphy has been investigating laser-tissue processes and treatments since 1986. He has published many peer-reviewed papers, articles and books on various topics including the removal of hair, tattoos, blood vessels, pigmentation using lasers and IPL systems.

He continues to research all of these areas and still presents his work at international medical laser conferences.

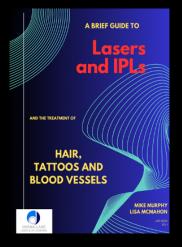
He has published three books on this subject:

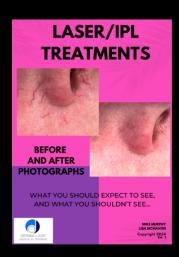
An Introduction to Medical/Aesthetic Lasers and IPL Systems

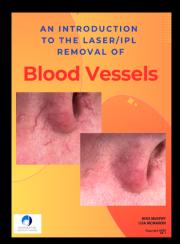
An Introduction to Laser Tattoo Removal


An Introduction to Laser/IPL Hair Removal

You can find his blog at 'MikeMurphyBlog.com'







Other booklets by Mike Murphy:

Go to my site to download these booklets at 'Scribblings.info'